POST-WEANING LIVE WEIGHTS OF MERINO WEANERS IN COMMERCIAL MERINO FLOCKS ON THE NORTHERN TABLELANDS OF NEW SOUTH WALES

D.G. FOWLER*, T.J. MAY* and J.F. WILKINS**

The growth of young Merino sheep on the Northern Tablelands of New South Wales is considered to be poor by comparison to that in other areas. Improved husbandry can increase growth rates (McLaughlin 1967) and there is no doubt that existing management practices on the Northern Tablelands have a direct bearing on the problem. We are currently conducting a survey to describe the features of commercial management and identify any relationships that may exist between such practices and weaner live weights.

Weaners from 36 commercial Merino sheep and wool properties, from six shires of the Northern Tablelands of New South Wales, were involved in the survey in 1979. A total of 1316 ewe and wether weaners that were born in the spring months of 1978, were weighed during early August 1979 and at this time, details of each flock and of management practices were obtained. These included the timing of all routine husbandry operations and of the pasture types present. Each flock was classified according to the wool type of the strain on which the flock was based.

Most properties had improved pastures (31/36, 86%). Two thirds (24) of the flocks were of a medium-wool type with the remainder (12) being of fine wool; there are very few strong-wool flocks in this part of the state. Mean dates of lambings varied from August 15 to November 26 but nearly one half of the flocks lambed in late September and early October. Most medium-wool flocks (20/24, 83%) lambed in August and September but most fine-wool flocks (10/12, 83%) lambed in October and November. This interaction between flock type and time of lambing was significant ($x^2 = 14.9, \text{df} 1, P<0.005$). Weaners from fine-wool flocks were lighter than those from medium-wool flocks (27.2 \pm 0.17 kg vs 28.7 \pm 0.16 kg; $P<0.001$). Weaners from early lambing flocks were heavier than those from later lambing flocks (28.8 \pm 0.18 kg vs 27.1 \pm 0.13 kg; $P<0.001$); this was associated with a difference of thirty days in mean date of lambing. The regression of live weight on age as calculated on all data and when adjusted for flock type, sex of weaner and location, was significant ($P<0.001$). There were significant live weight differences between ewe and wether weaners (27.7 \pm 0.13 kg vs 27.1 \pm 0.30 kg $P<0.005$) and the regressions of live weight on age, when adjusted for all other terms, were significant for both ewes and wethers. There were significant differences between shires in weaner live weights, the range being 25.8 \pm 0.19 to 30.7 \pm 0.27 kg ($P<0.005$). The regressions of live weight on age, when adjusted for all other terms were significant ($P<0.05$) in all but one shire. Dates of weaning varied from January 6 to April 28 with the majority being in February and early March. There was a tendency for medium-wool flocks to wean earlier but this trend was not significant.

The results of our survey so far show that heavier weaners can be obtained in most shires of the Northern Tablelands in both medium and fine-wool flocks by lambing in early spring i.e. late August-early September. The age advantage of early born lambs is reflected in their greater live weights in the following spring. The apparent benefits of earlier lambing have been utilised by most medium-wool producers and this may be an avenue for increasing weaner live weights in fine-wool flocks.

* Department of Agriculture, Glen Innes, N.S.W. 2370.
** Agricultural Research Centre, Tamworth, N.S.W. 2340.